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DECAY OF SOLUTIONS OF DAMPED KIRCHHOFF AND BEAM

EQUATIONS

J.V. KALANTAROVA1, G.N. ALIYEVA2

Abstract. We obtain uniform estimates for solutions of second-order nonlinear nonautonomous

differential-operator equation in a Hilbert space with structural damping. It is shown that when

the given source term in the equation tends to zero as t → ∞, the corresponding solution of

the Cauchy problem for this equation also tends to zero as t → ∞. Exponential decay of so-

lutions for the corresponding autonomous equation is also obtained. Applications to the initial

boundary value problems for some nonlinear Kirchhoff type and beam equations are given.
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1. Introduction

We consider the Cauchy problem for differential-operator equation of the formutt + νA2u+
(
α+ d∥A

1
2u∥2

)
Au+ bAθut = f(t),

u(0) = u0, ut(0) = u1,
(1)

in a Hilbert space H with inner product (·, ·) and the corresponding norm ∥·∥. Here A : D(A) →
H is a positive definite self-adjoint operator with dense domain D(A) ⊂ H and compact inverse.

Assume also that f ∈ L2(R+;H) is a given vector function, ν ≥ 0, α > 0, b > 0, d > 0; θ ≥ 0

are given parameters. Here and in what follows we are using the notations and inequalities:

• ut :=
d
dtu, utt :=

d2

dt2
u.

• 0 < λ1 ≤ λ2 ≤ · · · ≤ λn, · · · are the eigenvalues corresponding to the orthonormal system

of eigenvectors w1, w2, · · · , wn, · · · of the operator A.

• Aθu =
∞∑
k=1

λθ
k(u,wk), θ ∈ R.

• Poincaré type inequalities:

∥A
θ
2u∥2 ≥ λθ

1∥u∥2, u ∈ D(A
θ
2 ), θ ≥ 0; ∥A

1
2u∥2 ≥ λ1−θ

1 ∥A
θ
2u∥2, u ∈ D(A

1
2 ), θ ∈ [0, 1]. (2)

A strong solution of the problem (1) is a function u ∈ L∞(0, T ;D(A1+ θ
2 )),

ut ∈ L∞(0, T ;D(A
θ
2 )) that satisfies the equation (1) in the sense of distributions.

The original nonlinear Kirchhoff equation

∂2
t (x, t)−

α+ b

L∫
0

[∂xu(x, t)]
2dx

 ∂2
xu(x, t) = 0, (3)
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where α > 0, b > 0 are given parameters, has been introduced by Kirchhoff [9] to describe the

vibration of string of length L with constant cross section. As far as we know the first paper

devoted to the mathematical analysis of this equation is the famous paper of S.N. Bernstein [2].

In this paper, it is proved the existence of global in time analytic solution (3) on an interval of

real line under the homogeneous Dirichlet’s boundary conditions.

Woinowsky-Krieger introduced the equation

∂2
t (x, t)−

α+ b

L∫
0

[∂xu(x, t)]
2dx

 ∂2
xu(x, t) + ∂4

xu(x, t) = 0, (4)

to model the transverse motion of an extensible beam.

There are many publications devoted to the problem of global solvability and asymptotic

behavior of solutions of the initial-boundary value problems for damped Kirchhoff and beam

equations (see, e.g., [3], [5], [7], [8], [10], [11], [13], [15], [16] and references therein). All of these

papers are devoted to nonlinear equations with weak, strong or nonlinear damping terms.

We studied the global in time behavior of solutions of the Cauchy problem for second-order

nonlinear nonautonomous differential operator equation with structural damping term. Our

main results are the estimates (5), (26), (34) and (37) for weak and strong solutions of the prob-

lem (1). These estimates imply uniform boundedness of solutions in the case when
∞∫
0

∥f(t)∥H is

bounded. It follows that the solutions tend to zero as t → ∞ when ∥f(t)∥ → 0 as t → ∞. More-

over the obtained estimates imply exponential decay to zero of solutions of the corresponding

autonomous equation ( i.e. the equation (1) when f(t) ≡ 0.) These results allow us to get decay

estimates for solutions of structurally damped Kirchhoff equation, beam equations and some of

modifications of these equations.

2. Estimates of solutions

First we prove the following theorem about a weak solution of the problem (1) with

ν > 0, θ ∈ [0, 2], i.e., a function u ∈ L∞(0, T ;D(A)), ut ∈ L∞(0, T ;H)∩L2(0, T ;D(A
θ
2 )) which

satisfies the equation (1) in the sense of distributions.

Theorem 2.1. Suppose that u0 ∈ D(A), u1 ∈ H and f ∈ L2(0, T ;H), ∀T > 0. Then, for the

weak solution of the problem (1) the following estimate holds true:

∥ut(t)∥2 + ν∥Au(t)∥2 + α∥A
1
2u(t)∥2 + b∥A

θ
2u(t)∥2 ≤ M0(t), ∀t ∈ R+, (5)

where M0(t) depends on initial data and the source term f . Moreover M0(t) → 0 as t → ∞ if

∥f(t)∥ → 0 as t → ∞.

Proof. Multiplying the equation (1) by ut + εu with some ε > 0, we get

d

dt

[
1

2
∥ut∥2 +

ν

2
∥Au∥2 + α

2
∥A

1
2u∥2 + d

4
∥A

1
2u∥4 + ε(u, ut) +

bε

2
∥A

θ
2u∥2

]
+ εν∥Au∥2 + b∥A

θ
2ut∥2 − ε∥ut∥2 + εα∥A

1
2u∥2 + εd∥A

1
2u∥4 = (f(t), ut + εu). (6)

By using the Cauchy-Schwarz inequality and the Poincaré type inequality (2) we get

ε∥ut∥2 ≤
ε

λθ
1

∥A
θ
2ut∥2, |(f(t), ut)| ≤

1

λ
θ
2
1

∥A
θ
2ut∥∥f(t)∥ ≤ b

4
∥A

θ
2ut∥2 +

1

bλθ
1

∥f(t)∥2,
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ε|(f(t), u)| ≤ ελ
− 1

2
1 ∥f(t)∥∥A

1
2u∥ ≤ αε

4
∥A

1
2u∥2 + ε

αλ1
∥f(t)∥2.

Employing these inequalities we obtain from (6) that

d

dt
Φε(t) + εν∥Au∥2 +

(
3

4
b− ε

λθ
1

)
∥A

θ
2ut∥2 +

3

4
αε∥A

1
2u∥2 + εd∥A

1
2u∥4

≤
(

1

bλθ
1

+
ε

αλ1

)
∥f(t)∥2, (7)

where

Φε(t) :=
1

2
∥ut∥2 +

ν

2
∥Au∥2 + α

2
∥A

1
2u∥2 + d

4
∥A

1
2u∥4 + ε(u, ut) +

bε

2
∥A

θ
2u∥2. (8)

Since ∥A
θ
2u∥2 ≥ λθ

1∥u∥2, we have ε|(u, ut)| ≤ 1
4∥ut∥

2 + ε2λ−θ
1 ∥A

θ
2u∥2. Therefore, for ε ≤ bλθ

1
4

we obtain the following estimate from below for the function Φε(t) :

Φε(t) ≥
1

4
∥ut∥2 +

ν

2
∥Au∥2 + α

2
∥A

1
2u∥2 + d

4
∥A

1
2u∥4 + bε

4
∥A

θ
2u∥2. (9)

Let us rewrite (7) in the following form

d

dt
Φε(t) + δΦε(t) + [Hε(t)− δΦε(t)] ≤ F1(t), (10)

where δ < ε is some positive parameter which will be chosen below, F1(t) :=
(

1
bλθ

1
+ ε

αλ1

)
∥f(t)∥2

and

Hε(t) := εν∥Au∥2 +
(
3

4
b− ε

λθ
1

)
∥A

θ
2ut∥2 +

3

4
αε∥A

1
2u∥2 + εd∥A

1
2u∥4.

Let us show that ε > 0, δ > 0 can be chosen so that Hε(t)− δΦε(t) ≥ 0. In fact employing, the

inequalities

ε∥ut∥2 ≤ ελ−θ
1 ∥A

θ
2ut∥2, (11)

δε|(u, ut)| ≤
1

2
δελ−θ

1 ∥A
θ
2ut∥2 +

1

2
δελ−1

1 ∥A
1
2u∥2 (12)

we obtain

Hε(t)− δΦε(t) ≥
(
εν − δν

2

)
∥Au∥2 +

(
3

4
b− ε

λθ
1

− 1

2
δελ−θ

1 − δ

2λθ
1

)
∥A

θ
2ut∥2

+

(
3

4
αε− 1

2
δα− 1

2
δελ−1

1 − δbε

2λθ−1
1

)
∥A

1
2u∥2 + (ε− δd

4
)∥A

1
2u∥4. (13)

First we choose ε = 1
4bλ

θ
1. Then, we can choose δ < ε small enough and see that

Hε(t)− δΦε(t) ≥ b
4∥A

1
2ut∥2. Thus (6) implies the inequality

d

dt
Φε(t) + δΦε(t) +

b

4
∥A

θ
2ut∥2 ≤ F1(t). (14)

Hence

Φε(t) ≤ Φε(0)e
−δt + e−δt

t∫
0

eδτ∥F1(τ)∥2dτ. (15)

From this inequality and (9) we deduce that

∥ut∥2 + ν∥Au∥2 + α∥A
1
2u∥2 + b∥A

θ
2u∥2

≤ Q0e
−δt +Q1∥f∥2L2(0,t;H) := M0(t), ∀t > 0, (16)
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where Q0 > 0 is a parameter depending on initial data, Q1 depends on the parameters of the

equation.

On the other hand (15) implies that if ∥f(t)∥ → 0 as t → ∞ then

E1(t) := ∥ut∥2 + ν∥Au∥2 + α∥A
1
2u∥2 + b∥A

θ
2u∥2 → 0, as t → ∞. (17)

�

Let us consider the problem (1) with ν = 0 and θ ∈ (0, 1], i.e. the problemutt +
(
α+ d∥A

1
2u∥2

)
Au+ bAθut = f(t),

u(0) = u0, ut(0) = u1.
(18)

The equality (6) in this case takes the form

d

dt

[
1

2
∥ut∥2 +

α

2
∥A

1
2u∥2 + d

4
∥A

1
2u∥4 + ε(u, ut) +

bε

2
∥A

θ
2u∥2

]
+ b∥A

θ
2ut∥2 − ε∥ut∥2 + εα∥A

1
2u∥2 + εd∥A

1
2u∥4 = (f(t), ut + εu). (19)

Now, we use the inequalities

|(εu, f)| ≤ ελ
− 1

2
1 ∥A

1
2u∥∥f(t)∥ ≤ 1

2
εα∥A

1
2u∥2 + ε

2αλ1
∥f(t)∥2

ε∥ut∥2 ≤ ελ−θ
1 ∥A

θ
2ut∥2, |(f(t), ut)| ≤ λ

− θ
2

1 ∥A
θ
2ut∥∥f(t)∥ ≤ ελ−θ

1 ∥A
θ
2ut∥2 +

1

4ε
∥f(t)∥2

and infer from (19) that

d

dt
Jε(t) + (b− 2ελ−θ

1 )∥A
θ
2ut∥2 +

1

2
εα∥A

1
2u∥2 + εd∥A

1
2u∥4 ≤

(
ε

2αλ1
+

1

4ε

)
∥f(t)∥2, (20)

where

Jε(t) :=
1

2
∥ut∥2 +

α

2
∥A

1
2u∥2 + d

4
∥A

1
2u∥4 + ε(u, ut) +

bε

2
∥A

θ
2u∥2.

By choosing ε ≤ ε0 :=
1
4λ

θ
1b we obtain from (20) the inequality

d

dt
Jε(t) +

b

2
∥A

θ
2ut∥2 +

1

2
ε0α∥A

1
2u∥2 + ε0d∥A

1
2u∥4 ≤ D0∥f(t)∥2, (21)

with D0 := ε0
2αλ1

+ 1
4ε0

. Similar to how it was done when deriving (14) we can choose δ1 > 0

small enough such that
d

dt
Jε(t) + δ1Jε(t) ≤ D0∥f(t)∥2.

Integrating the last inequality

∥ut(t)∥2 + α∥A
1
2u(t)∥2 ≤ Q0e

−δt +Q1∥f∥2L2(0,t;H) := M01(t), ∀t > 0. (22)

Now, we will obtain estimate of a strong solution to the problem (18) with θ ∈ [12 , 1], i.e. a

function u ∈ L∞(R+;D(Aθ)), ut ∈ L∞(R+;H), that satisfies the equation (18) in the sense of

distributions.

Assume that

u0 ∈ D(Aθ), u1 ∈ H, f ∈ L2(R+;H).

Multiplication of (18) by Aθu gives

d

dt
E2(t)− ∥A

θ
2ut∥2 + α∥A

1
2
+ θ

2u∥2 + d∥A
1
2u∥2∥A

θ
2
+ 1

2u∥2 = (f(t), Aθu), (23)



J.V. KALANTAROVA, G.N. ALIYEVA: DECAY OF SOLUTIONS OF DAMPED ... 123

where

E2(t) :=
b

2
∥Aθu∥2 + (ut, A

θu).

Next, we multiply (23) by η > 0 and add to (21):

d

dt
[Jε0(t) + ηE2(t)] +

(
b

2
− η

)
∥A

θ
2ut∥2 + ηα∥A

1
2
+ θ

2u∥2 + 1

2
ε0α∥A

1
2u∥2 + ε0d∥A

1
2u∥4

≤ D0∥f(t)∥2 + η|(f(t), Aθu)|. (24)

Since

η|(f(t), Aθu)| ≤ η∥f(t)∥∥Aθu)∥ ≤ ηλ
(θ−1)/2
1 ∥A

1
2
+ θ

2u∥∥f(t)∥

≤ 1

2
ηα∥A

1
2
+ θ

2u∥2 + η

2α
λθ−1
1 ∥f(t)∥2,

we use the last inequality in (24) and choose η ∈ (0, b
4) we obtain

d

dt
[Jε0(t) + ηE2(t)] +

b

4
∥A

θ
2ut∥2 +

1

2
ηα∥A

1
2
+ θ

2u∥2 + 1

2
ε0α∥A

1
2u∥2 + ε0d∥A

1
2u∥4

≤ (D0 +
η

2α
λθ−1
1 )∥f(t)∥2. (25)

Similar to (13) we can show that for some δ2 > 0,

b

4
∥A

θ
2ut∥2 +

1

2
ηα∥A

1
2
+ θ

2u∥2 + 1

2
ε0α∥A

1
2u∥2 + ε0d∥A

1
2u∥4 − δ2 [Jε0(t) + ηE2(t)] ≥ 0, ∀t ≥ 0

and deduce form (25) that

d

dt
[Jε0(t) + ηE2(t)] + δ2 [Jε0(t) + ηE2(t)] ≤ (D0 +

η

2α
λθ−1
1 )∥f(t)∥2,

which implies that

Jε0(t) + ηE2(t) ≤ G(t)

where G(t) → 0 as t → 0 if ∥f(t)∥ → 0 as t → ∞. Remembering that ∥ut(t)∥2 ≤ M01(t) (see

(22)) and taking into account the inequality

E2(t) ≥
b

4
∥Aθu∥2 − 1

b
∥ut∥2,

we obtain the desired result:

Theorem 2.2. If u(t) is a strong solution of the problem (1) with ν = 0, θ ∈ [12 , 1], u0 ∈ D(Aθ),

u1 ∈ H and f ∈ L2(0, T ;H), then the strong solution of the problem satisfies the estimate

∥Aθu(t)∥2 + ∥ut(t)∥2 ≤ R(t), ∀ ∈ R+, (26)

where R(t) → 0 as t → ∞ when ∥f(t)∥ → 0 as t → ∞.

Moreover if f(t) ≡ 0, then ∥Aθut(t)∥2 + ∥u(t)∥2 tends to zero as t → ∞ with an exponential

rate.

Decay estimates for the problem (1) with ν > 0 : Assume that u is a strong solution

of the problem (1) with ν > 0, θ ∈ [1, 2] that is the function u ∈ L∞(R+;D(A1+ θ
2 )) with

ut ∈ L∞(R+;D(A
θ
2 )) which satisfies the equation (1) in the sense of distributions and suppose

that u0 ∈ D(A1+ θ
2 ), u1 ∈ D(Aθ), f ∈ L2(R+;H). First we multiply the equation (1) by Aθu :

d

dt

[
(ut, A

θu) +
b

2
∥Aθu∥2

]
− ∥A

θ
2ut∥2 + ν∥A1+ θ

2u∥2 + α∥A
1
2
+ θ

2u∥2 ≤ (f(t), Aθu).
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Addition of the last inequality multiplied by η > 0 with (14) gives us the inequality

d

dt
Uη(t)+ ην∥A1+ θ

2u∥2 + ηα∥A
1
2
+ θ

2u∥2 + δΦε(t)+ (
b

4
− η)∥A

θ
2ut∥2 ≤ F1(t)+ η(f(t), Aθu), (27)

where

Uη := Φε(t) +

[
η(ut, A

θu) +
ηb

2
∥Aθu∥2

]
.

Utilizing the inequality

η|(f(t), Aθu)| ≤ ηλθ−2
1 ∥f(t)∥∥A1+ θ

2u∥ ≤ ην

2
∥A1+ θ

2u∥2 + η

2νλ4−2θ
1

∥f(t)∥2

and choosing η ≤ b
8 we can rewrite (27) in the following form

d

dt
Uη(t) + κUη(t) +H(t)− κUη(t) ≤ F(t), (28)

where κ > 0 ,

H(t) :=
ην

2
∥A1+ θ

2u∥2 + ηα∥A
1
2
+ θ

2u∥2 + δΦε(t) + (
b

4
− η)∥A

θ
2ut∥2,

and F(t) := F1(t) +
η

2νλ4−2θ
1

∥f(t)∥2. Now, we can choose κ > 0 small enough (depending on the

parameters of the equation) such that

H(t)− κUη(t) ≥ κ1

[
∥A1+ θ

2u∥2 + ∥A
θ
2ut∥2

]
,

with some κ1 > 0 and hence

d

dt
Uη(t) + κUη(t) + κ1

[
∥A1+ θ

2u∥2 + ∥A
θ
2ut∥2

]
≤ F(t). (29)

Integrating the last inequality we get the estimate

∥ut∥2 + ∥Au∥2 + ∥Aθu∥2 ≤ M∗
1 (t), ∀t ∈ R+. (30)

Now we multiply the equation (1) by Aθut and obtain that

1

2

d

dt

[
∥A

θ
2ut∥2 + ν∥A1+ θ

2u∥2 + α∥A
1
2
+ θ

2u∥2
]

+ d∥A
1
2u∥2(Au,Aθut) + b∥Aθut∥2 ≤ (f(t), Aθut) ≤

b

4
∥Aθut∥2 +

1

b
∥f(t)∥2. (31)

On the other hand

∥A
1
2u∥2|(Au,Aθut)| ≤

b

4
∥Aθut∥2 +

1

b
∥A

1
2u∥4∥Au∥2

≤ b

4
∥Aθut∥2 +

1

b
λ2−2θ
1 ∥A

1
2u∥4∥Aθu∥2 ≤ b

4
∥Aθut∥2 +

1

b
λ2−2θ
1 M0(t)

2R(t).

Thus (31) implies:

d

dt

[
∥A

θ
2ut∥2 + ν∥A1+ θ

2u∥2 + α∥A
1
2
+ θ

2u∥2
]
+

b

2
∥Aθut∥2 ≤

2

b
λ2−2θ
1 M0(t)

2R(t). (32)

Adding the last inequality and (29) yields

d

dt
Vγ(t) + κUη(t) + κ1

[
∥A1+ θ

2u∥2 + ∥A
θ
2ut∥2

]
≤ G(t), (33)

where

Vγ(t) := ∥A
θ
2ut∥2 + ν∥A1+ θ

2u∥2 + α∥A
1
2
+ θ

2u∥2 + Uη(t)
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and G(t) := F(t) + 2
bλ

2−2θ
1 M0(t)

2R(t). The last inequality implies existence of γ > 0 such

that
d

dt
Vγ(t) + γVγ(t) ≤ G(t).

Integrating this inequality we obtain the estimate

∥A
θ
2ut∥2 + ν∥A1+ θ

2u∥2 + α∥A
1
2
+ θ

2u∥2 ≤ Q0Vγ(0)e
−γt +Q1

t∫
0

G(τ)dτ.

So we proved the following Theorem:

Theorem 2.3. If u0 ∈ D(A1+ θ
2 ), u1 ∈ D(Aθ), f ∈ L2(R+;H) and u is a strong solution of the

problem (1) with ν > 0, θ ∈ [1, 2] Then, the following estimate holds true:

∥A
θ
2ut(t)∥2 + ν∥A1+ θ

2u(t)∥2 ≤ L0(t), ∀t ∈ R+, (34)

where L0(t) depends on initial data and the source term f . Moreover L0(t) → 0 as t → ∞ if

∥f(t)∥ → 0 as t → ∞.

Analog of the Theorem 2.1, i.e., the following corollary holds also for solutions of the problemutt + νA2u+
(
α+ d∥A

1
2u∥2

)
Au+ bAθut + (Au, ut)Au = f(t),

u(0) = u0, ut(0) = u1.
(35)

Theorem 2.4. If θ ∈ [0, 2], u1 ∈ H, u0 ∈ D(A) and f ∈ L2(0, T ;H), then the weak solution of

the problem (35) satisfies the estimate

I1(t) := ∥ut(t)∥2 + ∥Au(t)∥2 ≤ M2(t), ∀ ∈ R+. (36)

If θ ∈ [1, 2], u1 ∈ D(Aθ), u0 ∈ D(A1+ θ
2 ) and f ∈ L2(0, T ;H), then

I2(t) := ∥A
θ
2ut(t)∥2 + ∥A1+ θ

2u(t)∥2 ≤ M3(t), ∀ ∈ R+. (37)

where Mj(t) → 0 (j = 2, 3) as t → ∞ and I1(t), I2(t) tend to zero with an exponential rate,

if f(t) ≡ 0.

In fact multiplication of (35) by ut + εu gives

d

dt

[
1

2
∥ut∥2 +

ν

2
∥Au∥2 + α

2
∥A

1
2u∥2 + d+ ε

4
∥A

1
2u∥4 + ε(u, ut) +

bε

2
∥A

θ
2u∥2

]
+ (Au, ut)

2 + b∥A
θ
2ut∥2 − ε∥ut∥2 + εν∥Au∥2 + εα∥A

1
2u∥2 + εd∥A

1
2u∥4

= (f(t), ut + εu) ≤ ε∥ut∥2 + ε∥u∥2 +
(

1

4ε
+

ε

4

)
∥f(t)∥2. (38)

Employing the inequality (2) and choosing ε < 1
2{bλ

θ
1, νλ

2
1} we obtain from (38) that

d

dt
[Φε(t)+

ε

4
∥A

1
2 ∥4] + ν

2
∥Au∥2+(Au, ut)

2+
b

2
∥A

θ
2ut∥2+ εα∥A

1
2u∥2 ≤

(
1

4ε
+

ε

4

)
∥f(t)∥2, (39)

where Φε(t) is defined in (8). Having the last estimate we can deduce the estimate (36) similar

to the proof of Theorem 2.1. If θ ∈ [1, 2] we multiply (35) by Aθut + σAθu :

d

dt
Hσ(t) + 2b∥Aθut∥2 + 2d∥A

1
2u∥2(Au,Aθut) + 2σν∥A1+ θ

2u∥2 + 2σα∥A
1
2
+ θ

2u∥2

+ 2σd∥A
1
2u∥2(Au,Aθu)− 2σ∥A

θ
2ut∥2 = 2(f(t), Aθut + σAθu), (40)
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where

Hσ(t) := ∥A
θ
2ut∥2 + ν∥A1+ θ

2u∥2 + α∥A
1
2
+ θ

2u∥2 + 2σ(ut, A
θu) + σb∥Aθu∥2.

Utilizing the Poincaré type inequalities (2) and the estimate (36) we get:

2d∥A
1
2u∥2|(Au,Aθut)| ≤ ε2∥Aθut∥2 +

d2

ε2
∥A

1
2u∥4∥Au∥2 ≤ ε2∥Aθut∥2 +

d2

λ2
1ε2

[M2(t)]
6,

2σd∥A
1
2u∥2|(Au,Aθu)| ≤ 2σdλθ−2

1 ∥A
1
2u∥2∥Au∥∥A

1
2
+ θ

2u∥

≤ ε3∥A
1
2
+ θ

2u∥2 + 1

ε3
[σdλθ−3

1 ]2[M2(t)]
6,

2|(f(t), Aθut + σAθu)| ≤ ε2∥A
θ
2ut∥2 + ε3∥A1+ θ

2u∥2 +

(
1

ε2
+

σ2

λ4−2θ
1

)
∥f(t)∥2.

By using last three inequalities and the inequality 2σ∥A
θ
2ut∥2 ≤ 2σλ−θ

1 ∥Aθut∥2 in (40) we obtain

d

dt
Hσ(t) + (2b− 2σ

λθ
1

− ε2)∥Aθut∥2 + (2σν − 2ε3)∥A1+ θ
2u∥2 + 2σα∥A

1
2
+ θ

2u∥2 ≤ F1(t), (41)

where

F1(t) :=

[
d2

λ2
1ε2

+
1

ε3
[σdλθ−3

1 ]2
]
[M2(t)]

6 +

(
1

ε2
+

σ2

λ4−2θ
1

)
∥f(t)∥2.

Finally we choose σ = 1
2bλ

θ
1 and ε2 > 0, ε3 > 0 small enough and deduce from (41) the desired

estimate (37).

Remark 2.1. For the results on existence and uniqueness of solutions of the Kirchhoff equation

and the Beam equation we refer to [4], [6], [12], [14] and references therein. In [4] the author

studied the problem of long time dynamics of the autonomous Kirchhoff equation with structural

damping term, in [6] the author proved global solvability of initial boundary value problem for

the extensible beam equation with strong damping term.

3. Applications

The Kirchhoff Equation with structural damping: Here we consider the problem:
∂2
t u− α∆u− d∥∇u∥2L2(Ω)∆u+ (−∆)θ∂tu = f(x, t), x ∈ Ω, t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1, x ∈ ∂Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

(42)

where d > 0, β > 0, α > 0, θ ∈ [12 , 1] are given numbers, Ω ⊂ Rn is a bounded domain with

sufficiently smooth boundary ∂Ω and f ∈ L2(0, T ;L2(Ω)), ∀T > 0 is a given source term. This

equation can be written in the form (1), where ν = 0 and A is the Laplace operator −∆ under

the homogeneous Dirichlet’s boundary condition. Then according to Theorem 2.2, the following

estimate holds ture

∥∂tu(t)∥2L2(Ω) + α∥u(t)∥2H2θ(Ω) ≤ R(t), (43)

where ∥∂tu(t)∥2Hθ(Ω)
+α∥u(t)∥2

H1+θ(Ω)
tends to zero with an exponential rate, if ∥f(t)∥L2(Ω) → 0

as t → ∞.



J.V. KALANTAROVA, G.N. ALIYEVA: DECAY OF SOLUTIONS OF DAMPED ... 127

Structurally damped beam equation: Here we consider the problem:
∂2
t u+ ν∂4

xu−

(
α+ d

L∫
0

u2x(x, t)dx

)
∂2
xu+ b(−∂2

x)
θ∂tu = f(x, t), x ∈ (0, L), t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1, x ∈ (0, L),

u(0, t) = u(L, t) = ∂2
xu(0, t) = ∂2

xu(0, t), t > 0,

(44)

where

d > 0, b > 0, ν > 0, α > 0, θ ∈ [0, 2] are given numbers, f ∈ L2(0, T ;L2(0, L)), ∀T > 0, (45)

is a given source term. This equation can be written in the form (1), where A is the Sturm-

Liuoville operator − d2

dx2 under the homogeneous Dirichlet’s boundary conditions and the domain

of definition H2(0, L) ∩H1
0 (0, L). According to the Theorem 2.3 we have

E3(t) := ∥∂tu(t)∥2Hθ(0,L + ν∥u(t)∥2H2+θ(0,L) ≤ M3(t),

where M3(t) → 0, t → ∞, if ∥f(t)∥L2(Ω) → 0 as t → ∞. If f(t) ≡ 0, then E3(t) tends to zero

with an exponential rate as t → ∞.

Damped extensible beam equation: Finally, we consider the initial boundary value problem

for the equation describing the transverse motion of an extensible beam with structural and

external damping terms: (see [1])
∂2
t u+ ν∂4

xu−

(
α+ d

L∫
0

[∂xu]
2dx+

L∫
0

∂t∂xu∂xu

)
∂2
xu+ b(−∂2

x)
θ∂tu = f(x, t),

u(x, 0) = u0(x), ∂tu(x, 0) = u1,

u(0, t) = u(L, t) = ∂2
xu(0, t) = ∂2

xu(0, t), t > 0.

Here the parameters α, ν, b, d and the function f satisfy (45). According to the Theorem 2.4 the

following estimate for the weak solution of this problem holds true

E4(t) := ∥∂tu(t)∥2Hθ(0;l) + ν∥u(t)∥2H2(0,L) ≤ R1(t),

where R1(t) → 0, t → ∞, if ∥f(t)∥L2(Ω) → 0 as t → ∞, if f(t) ≡ 0, then E4(t) exponentially

tends to zero as t → ∞.
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